Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Experimental and Computational Analysis of Impact of Self Recirculation Casing Treatment on Turbocharger Compressor

2010-04-12
2010-01-1224
Self recirculation casing treatment has been showed to be an effective technique to extend the flow range of the compressor. However, the mechanism of its surge extension on turbocharger compressor is less understood. Investigation and comparison of internal flow filed will help to understand its impact on the compressor performance. In present study, experimentally validated CFD analysis was employed to study the mechanism of surge extension on the turbocharger compressor. Firstly a turbocharger compressor with replaceable inserts near the shroud of the impeller inlet was designed so that the overall performance of the compressor with and without self recirculation casing treatment could be tested and compared. Two different self recirculation casing treatments had been tested: one is conventional self recirculation casing treatment and the other one has deswirl vanes inside the casing treatment passage.
Technical Paper

Experimental Validation of Jet Fuel Surrogates in an Optical Engine

2017-03-28
2017-01-0262
Three jet fuel surrogates were compared against their target fuels in a compression ignited optical engine under a range of start-of-injection temperatures and densities. The jet fuel surrogates are representative of petroleum-based Jet-A POSF-4658, natural gas-derived S-8 POSF-4734 and coal-derived Sasol IPK POSF-5642, and were prepared from a palette of n-dodecane, n-decane, decalin, toluene, iso-octane and iso-cetane. Optical chemiluminescence and liquid penetration length measurements as well as cylinder pressure-based combustion analyses were applied to examine fuel behavior during the injection and combustion process. HCHO* emissions obtained from broadband UV imaging were used as a marker for low temperature reactivity, while 309 nm narrow band filtered imaging was applied to identify the occurrence of OH*, autoignition and high temperature reactivity.
Journal Article

Experimental Investigation of the Interaction of MultipleGDI Injections using Laser Diagnostics

2010-04-12
2010-01-0596
In present GDI engines, multiple injection strategies are often employed for engine cold start mixture formation. In the future, these strategies may also be used to control the combustion process, and to prevent misfiring or high emission levels. While the processes occurring during individual injections of GDI injectors have been investigated by a number of researchers, this paper concentrates on the interactions of multiple injection events. Even though multiple injection strategies are already applied in most GDI engines, the impact of the first injection event on the second injection event has not been analyzed in detail yet. Different optical measurement techniques are used in order to investigate the interaction of the two closely timed injection events, as well as the effect of dwell time and the in-cylinder conditions. The injector investigated is a GDI piezo injector with an outwardly opening needle.
Technical Paper

Emissions Trade-Off and Combustion Characteristics of a High-Speed Direct Injection Diesel Engine

2001-03-05
2001-01-0197
The emissions trade-off and combustion characteristics of a high speed, small-bore, direct injection, single cylinder, diesel engine are investigated at three different load conditions. The experiments covered a wide range of parameters including the injection pressure, exhaust gas recirculation (EGR) rate and swirl ratio (Sw). The effects of each parameter on the ignition delay (ID), apparent rate of energy release (ARER), NOx, Bosch smoke unit (BSU), CO and hydrocarbons are investigated. The results show that the NOx emission dropped continuously with the increase in EGR (up to 55%), but with increasing smoke emission in a classical trade-off relationship. The increase in injection pressure generally reduced smoke with NOx penalty; however, the NOx penalty decreased at higher EGR. There also appears to be an increase in the cool flame intensity at the high EGR rates. Applying swirl at high EGR rate and high injection pressure conditions further reduced smoke emissions.
Technical Paper

Effects of Injection Timings and Intake Port Flow Control on the In-Cylinder Wetted Fuel Footprints during PFI Engine Startup Process

2005-05-11
2005-01-2082
Wall-wetting due to liquid fuel film motion and fuel droplet impingement on combustion chamber walls is a major source of unburned hydrocarbons (UBHC), and is a concern for oil dilution in PFI engines. An experimental study was carried out to investigate the effects of injection timing, a charge motion control device, and the matching of injector with port geometry, on the “footprints” of liquid fuel inside the combustion chamber during the PFI engine starting process. Using a gasoline-soluble dye and filter paper deployed on the cylinder liner and piston top land surfaces to capture the liquid fuel footprints, the effects of the mixture formation processes on the wetted footprints can be qualitatively and quantitatively examined by comparing the wetted footprint locations and their color intensities. Real-time filming of the development of wetted footprints using a high-speed camera can also show the time history of the fuel wetting process inside an optically accessible engine.
Journal Article

Effects of Fuel Cell Material Properties on Water Management Using CFD Simulation and Neutron Imaging

2010-04-12
2010-01-0934
Effects of fuel cell material properties on water management were numerically investigated using Volume of Fluid (VOF) method in the FLUENT. The results show that the channel surface wettability is an important design variable for both serpentine and interdigitated flow channel configurations. In a serpentine air flow channel, hydrophilic surfaces could benefit the reactant transport to reaction sites by facilitating water transport along channel edges or on channel surfaces; however, the hydrophilic surfaces would also introduce significantly pressure drop as a penalty. For interdigitated air flow channel design, it is observable that liquid water exists only in the outlet channel; it is also observable that water distribution inside GDL is uneven due to the pressure distribution caused by interdigitated structure. An in-situ water measurement method, neutron imaging technique, was used to investigate the water behavior in a PEM fuel cell.
Technical Paper

Effects of B20 Fuel and Catalyst Entrance Section Length on the Performance of UREA SCR in a Light-Duty Diesel Engine

2010-04-12
2010-01-1173
The current study focused on the effects B20 fuel (20% soybean-based biodiesel) and SCR entrance shapes on a light-duty, high-speed, 2.8L common-rail 4-cylinder diesel engine, at different exhaust temperatures. The results indicate that B20 has less deNOX efficiency at low temperature than ULSD, and that N₂O emission need to be characterized as well as NH₃ slip. If a mixer and enough mixing length are used, longer divergence section does not improve the deNOX efficiency significantly under the speed ranges tested.
Technical Paper

Effect of Nozzle hole Geometry on a HSDI Diesel Engine-Out Emissions

2003-03-03
2003-01-0704
The combustion and emission characteristics of a high speed, small-bore, direct injection, single cylinder, diesel engine are investigated using two different nozzles, a 430-VCO (0.171mm) and a 320 Mini sac (0.131mm). The experiments were conducted at conditions that represent a key point in the operation of a diesel engine in an electric hybrid vehicle (1500 rpm and light load condition). The experiments covered fuel injection pressures ranging from 400 to 1000 bar and EGR ratios ranging from 0 to 50%. The effects of nozzle hole geometry on the ignition delay (ID), apparent rate of energy release (ARER, ARHR), NOx, Bosch smoke unit (BSU), CO and hydrocarbons are investigated.
Technical Paper

Effect of Cycle-to-Cycle Variation in the Injection Pressure in a Common Rail Diesel Injection System on Engine Performance

2003-03-03
2003-01-0699
The performance of the Common Rail diesel injection system (CRS) is investigated experimentally in a single cylinder engine and a test rig to determine the cycle-to-cycle variation in the injection pressure and its effects on the needle opening and rate of fuel delivery. The engine used is a single cylinder, simulated-turbocharged diesel engine. Data for the different injection and performance parameters are collected under steady state conditions for 35 consecutive cycles. Furthermore, a mathematical model has been developed to calculate the instantaneous fuel delivery rate at various injection pressures. The experimental results supported with the model computations indicated the presence of cycle-to-cycle variations in the fuel injection pressure and needle lift. The variations in the peak-cylinder gas pressure, rate of heat release, cylinder gas temperature and IMEP are correlated with the variation in the injection rate.
Technical Paper

Dynamics of Multiple-Injection Fuel Sprays in a Small-bore HSDI Diesel Engine

2000-03-06
2000-01-1256
An experimental study was conducted to characterize the dynamics and spray behavior of a wide range of minisac and Valve-Covered-Orifice (VCO) nozzles using a high-pressure diesel common-rail system. The measurements show that the resultant injection-rate is strongly dependent on common-rail pressure, nozzle hole diameter, and nozzle type. For split injection the dwell between injections strongly affects the second injection in regards to the needle lift profile and the injected fuel amount. The minisac nozzle can be used to achieve shorter pilot injections at lower common-rail pressures than the VCO nozzle. Penetration photographs of spray development in a high pressure, optical spray chamber were obtained and analyzed for each test condition. Spray symmetry and spray structure were found to depend significantly on the nozzle type.
Technical Paper

Direct Visualization of High Pressure Diesel Spray and Engine Combustion

1999-10-25
1999-01-3496
An experimental study was carried out to visualize the spray and combustion inside an AVL single-cylinder research diesel engine converted for optical access. The injection system was a hydraulically-amplified electronically-controlled unit injector capable of high injection pressure up to 180 MPa and injection rate shaping. The injection characteristics were carefully characterized with injection rate meter and with spray visualization in high-pressure chamber. The intake air was supplied by a compressor and heated with a 40kW electrical heater to simulate turbocharged intake condition. In addition to injection and cylinder pressure measurements, the experiment used 16-mm high-speed movie photography to directly visualize the global structures of the sprays and ignition process. The results showed that optically accessible engines provide very useful information for studying the diesel combustion conditions, which also provided a very critical test for diesel combustion models.
Technical Paper

Direct Visualization of Combustion in an E85-Fueled DISI Engine under Various Operation Conditions

2013-04-08
2013-01-1129
Gasoline-direct-injection (GDI) engines have been adopted increasingly by the automotive industry in the recent years due to their performance, effects on the environment, and customers' demand on advanced technology. However, the knowledge of detailed combustion process in such engines is still not thoroughly analyzed and understood. With optically accessible engines (OAE) and advanced measuring techniques, such as high-speed digital imaging, the in-cylinder combustion process is made available directly to researchers. The present study primarily focuses on the effects of different parameters of engine control on the combustion process, such as fuel types, valve deactivation, ignition timing, spark energy, injection timing, air-fuel ratio, and exhaust gas recirculation. Three engine heads of a 2.0L GDI engine are used with modification to acquire different optical access.
Technical Paper

Diesel Cold-Starting Study Using Optically Accessible Engines

1995-10-01
952366
An experimental and numerical study was carried out to simulate the diesel spray behavior during cold starting conditions inside two single-cylinder optically accessible engines. One is an AVL single-cylinder research diesel engine converted for optical access; the other is a TACOM/LABECO engine retrofitted with mirror-coupled endoscope access. The first engine is suitable for sophisticated optical diagnostics but is constrained to limited consecutive fuel injections or firings. The second one is located inside a micro-processor controlled cold room; therefore it can be operated under a wide range of practical engine conditions and is ideal for cycle-to-cycle variation study. The intake and blow-by flow rates are carefully measured in order to clearly define the operation condition. In addition to cylinder pressure measurement, the experiment used 16-mm high-speed movie photography to directly visualize the global structures of the sprays and ignition process.
Technical Paper

Correlating the Diesel Spray Behavior to Nozzle Design

1999-10-25
1999-01-3555
This paper studies the effect of nozzle geometry on the flow characteristics inside a diesel fuel injection nozzle and correlates to the subsequent atomization process under different operating conditions, using simple turbulent breakup model. Two kinds of nozzles, valve covered orifice (VCO) and mini-SAC nozzle, with various nozzle design parameters were studied. The internal flow inside the nozzle was simulated using 3-D computational fluid dynamics software with k-ε turbulence model. The flow field at the nozzle exit was characterized by two parameters: the fuel discharge coefficient Cd and the initial amplitude parameter amp0. The latter parameter represents the turbulence characteristics of the exit flow. The effects of nozzle geometry on the mean velocity and turbulent energy distribution of the exit flow were also studied. The characteristics of the exit flow were then incorporated into the spray model in KIVA-II to study the effect of nozzle design on diesel spray behavior.
Technical Paper

Correlating Port Fuel injection to Wetted Fuel Footprints on Combustion Chamber Walls and UBHC in Engine Start Processes

2003-10-27
2003-01-3240
Unburned hydrocarbon (UBHC) emissions from gasoline engines remain a primary engineering research and development concern due to stricter emission regulations. Gasoline engines produce more UBHC emissions during cold start and warm-up than during any other stage of operation, because of insufficient fuel-air mixing, particularly in view of the additional fuel enrichment used for early starting. Impingement of fuel droplets on the cylinder wall is a major source of UBHC and a concern for oil dilution. This paper describes an experimental study that was carried out to investigate the distribution and “footprint” of fuel droplets impinging on the cylinder wall during the intake stroke under engine starting conditions. Injectors having different targeting and atomization characteristics were used in a 4-Valve engine with optical access to the intake port and combustion chamber.
Technical Paper

Combustion Visualization of DI Diesel Spray Combustion inside a Small-Bore Cylinder under different EGR and Swirl Ratios

2001-05-07
2001-01-2005
An experimental setup using rapid compression machine to provide excellent optical access to visualize simulated high-speed small-bore direct injection diesel engine combustion processes is described. Typical combustion visualization results of diesel spray combustion under different EGR, swirl, and injection pressure and nozzle conditions are presented. Different swirl intensities are achieved using an air nozzle with variable orientations and a check valve to connect the compression chamber and the combustion chamber. Different EGR ratios are achieved by pre-injection of diesel fuel prior to the main observation sequence. Clear visualization of the high-pressure fuel injection, ignition, combustion and spray/wall/swirl interactions is obtained. The injection system is a high-pressure common-rail system with either a VCO or a mini-sac nozzle. High-speed movies up to 35,000 frame-per-second are taken using a framing drum camera to record the combustion events.
Journal Article

Characterization of the Near-Field Spray and Internal Flow of Single-Hole and Multi-Hole Sac Nozzles using Phase Contrast X-Ray Imaging and CFD

2011-04-12
2011-01-0681
It is well know that the internal flow field and nozzle geometry affected the spray behavior, but without high-speed microscopic visualization, it is difficult to characterize the spray structure in details. Single-hole diesel injectors have been used in fundamental spray research, while most direct-injection engines use multi-hole nozzle to tailor to the combustion chamber geometry. Recent engine trends also use smaller orifice and higher injection pressure. This paper discussed the quasi-steady near-nozzle diesel spray structures of an axisymmetric single-hole nozzle and a symmetric two-hole nozzle configuration, with a nominal nozzle size of 130 μm, and an attempt to correlate the observed structure to the internal flow structure using computational fluid dynamic (CFD) simulation. The test conditions include variation of injection pressure from 30 to 100 MPa, using both diesel and biodiesel fuels, under atmospheric condition.
Technical Paper

Characterization of Multi-hole Spray and Mixing of Ethanol and Gasoline Fuels under DI Engine Conditions

2010-10-25
2010-01-2151
Because of their robustness and cost performance, multi-hole gasoline injectors are being adopted as the direct injection (DI) fuel injector of choice as vehicle manufacturers look for ways to reduce fuel consumption without sacrificing power and emission performance. To realize the full benefits of direct injection, the resulting spray needs to be well targeted, atomized, and appropriately mixed with charge air for the desirable fuel vapor concentration distributions in the combustion chamber. Ethanol and ethanol-gasoline blends synergistically improve the turbo-charged DI gasoline performance, especially in down-sized, down-sped and variable-valve-train engine architecture. This paper presents the spray imaging results from two multi-hole DI gasoline injectors with different design, fueled with pure ethanol (E100) or gasoline (E0), under homogeneous and stratified-charge conditions that represent typical engine operating points.
Technical Paper

Characterization of Internal flow and Spray of Multihole DI Gasoline Spray using X-ray Imaging and CFD

2011-08-30
2011-01-1881
Multi-hole DI injectors are being adopted in the advanced downsized DISI ICE powertrain in the automotive industry worldwide because of their robustness and cost-performance. Although their injector design and spray resembles those of DI diesel injectors, there are many basic but distinct differences due to different injection pressure and fuel properties, the sac design, lower L/D aspect ratios in the nozzle hole, closer spray-to-spray angle and hense interactions. This paper used Phase-Contrast X ray techniques to visualize the spray near a 3-hole DI gasoline research model injector exit and compared to the visible light visualization and the internal flow predictions using with multi-dimensional multi-phase CFD simulations. The results show that strong interactions of the vortex strings, cavitation, and turbulence in and near the nozzles make the multi-phase turbulent flow very complicated and dominate the near nozzle breakup mechanisms quite unlike those of diesel injections.
Journal Article

Characterization of Diesel Common Rail Spray Behavior for Single- and Double-hole Nozzles

2008-10-06
2008-01-2424
Double-hole nozzle and multiple injections have the potential for better fuel atomization and mixing in DI engine. In order to evaluate the behavior of the spray for the double-hole nozzles against traditional single-hole ones, high-speed spray visualization was carried out using a streak film camera and a copper vapor laser, and in combination with a long-distance camera when taking microscopic movies. The spray penetration and the cone angle were measured based on the images and compared for variable injection pressures, and for single and split injections, under ambient and elevated chamber pressure conditions. The results showed that the spray of the double-hole nozzle has comparable penetration but smaller cone angle when viewed from the nozzle end, compared to the single-hole nozzle with the same total hole discharge cross-sectional area. For microscopic view, it was observed that the interaction between the dual sprays is very dynamic.
X